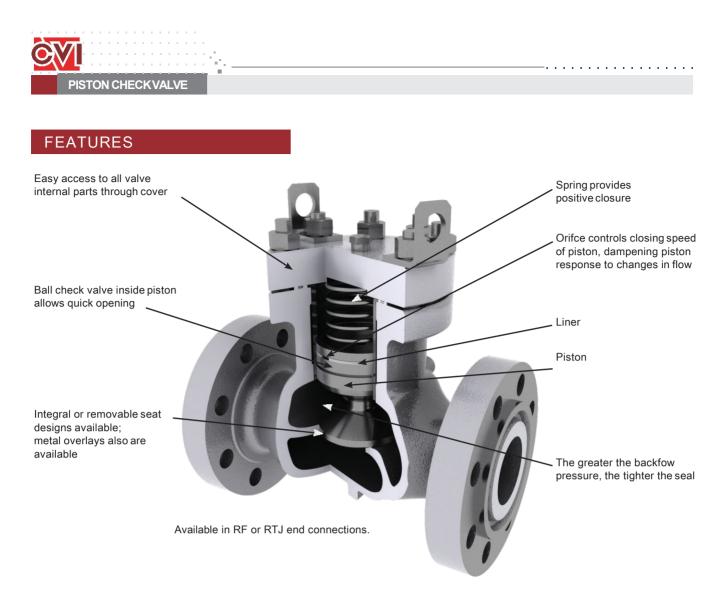


PISTON CHECK VALVES

CALVARY VALVE INC



CONTENTS

PISTON CHECK VALVES

Features	2
How to Order	3
Dimensions	4
Materials of Construction	5
Pressure-loss Curves / Flow Coeffcients	6

When pressure surges and pulsations are prevalent in a flow system, CVI piston check valves are an efficient solution to system protection.

Due to a unique non-slam design, CVI piston check valves have provided years of uninterrupted service downstreamfromreciprocatingpumps and compressors, and in other applications where conventional check valve designs would be subjected to excessive wear. In addition, the CVI piston check valve top entry design allows for easy access and replacement of all valve internal parts with reduced downtime.

Smooth, Reliable Prevention of Backflow

In the absence of pressure differential, a CVI piston check valve rests in the closed position due to gravity and spring force. Pressure on the upstream end of the valve lifts the piston off the seat and allows flow. As flow varies, the piston of the CVI piston check valve floats within a cylinder. Should the flow cease, the piston lowers and seats to create a bubble-tight prevention of backflow. A ball check mechanism and an adjacent orifice within the piston help to extend valve life by dampening piston movement and eliminating slamming or chattering in the event of sudden pressure surges or erratic flow conditions.

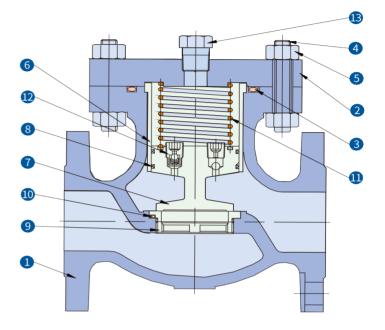
The orifice size affects the degree of piston movement and is optimally selected at the factory to meet the requirements of a specified flow range.

The CVI piston check valve is available with the following features:

- Soft seal
- · Metal-to-metal seal
- Renewable seat
- Avariety of body and trim materials

As a result of the piston and seat design, the greater the backpressure acting on the piston, the tighter the seal.

CVI piston check valves comply with API 6D/ ISO 14313, ASTM B 16.34 and NACE MR0175/ISO 15156, and all CVI piston check valves are designed for horizontal service. CVI piston check valves must be ordered specifically for vertical flow when intended for that service.



SE	R	ES	PC	,
Р	iston (Check Val	ve	

.

When pressure surges and pulsations are prevalent in a flow system, CVI piston check valves are an efficient solution to system protection.

Due to a unique non-slam design, CVI piston check valves have provided years of uninterrupted service downstream from reciprocating pumps and compressors, and in other applications where conventional check valve designs would be subjected to excessive wear. In addition, the CVI piston check valve top entry design allows for easy access and replacement of all valve internal parts with reduced downtime.

Smooth, Reliable Prevention of Backflow

In the absence of pressure differential, a CVI piston check valve rests in the closed position due to gravity and spring force. Pressure on the upstream end of the valve lifts the piston off the seat and allows flow. As flow varies, the piston of the CVI piston check valve floats within a cylinder. Should the flow cease, the piston lowers and seats to create a bubble-tight prevention of backflow.

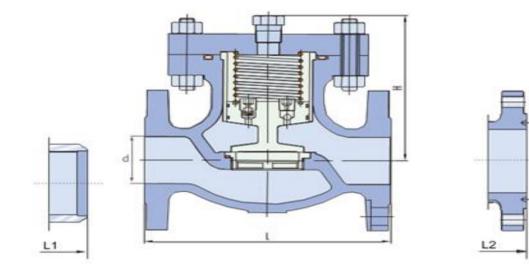
A ball check mechanism and an adjacent orifice within the piston help to extend valve life by dampening piston movement and eliminating slamming or chattering in the event of sudden pressure surges or erratic flow conditions.

The orifice size affects the degree of piston movement and is optimally selected at the factory to meet the requirements of a specified flow range. The CVI piston check valve is available with the following features:

- Soft seal
- Metal-to-metal sea
- Renewable seat
- A variety of body and trim materials

As a result of the piston and seat design, the greater the backpressure acting on the piston, the tighter the seal.

CVI piston check valves comply with API 6D/ ISO 14313, ASTM B 16.34 and NACE MR0175/ISO 15156, and all CVI piston check valves are designed for horizontal service. CVI piston check valves must be ordered specifically for vertical flow when intended for that service.


PC CHECK VALVE Piston Check Valve

NO.	PART	A105/ENP
0	Body	ASTM A216 WCC
2	Cover	ASTMA105N
3	*Cover O-Ring	Viton
4	Body Study	ASTMA193-B7
6	Body Nut	ASTMA194-2H
6	Liner	Carbon Steel ENP
I	Piston	ASTMA105N+316
8	*Piston Rings	Viton
9	SeatRing	ASTMA105N+316
10	*Seat O-Ring	Viton
0	Piston Spring	Inconel X-750
12	Ball Check valve	Stainless Steel
ß	Plug	Stainless Steel

*Recommened Spare Parts

FU	LLBORE	C	LASS 600									
SI. in	ZE mm	(in	d mm	L in	mm	L1 in	mm	L2 in	mm	H	mm	WEIGHT Lb Kg
2	50	2	51	115	292	115	292	11.6	295	7	178	77.2 35
3	80	3	76	14	356	14	356	14.1	359	8.3	212	101.4 46
4	100	4	102	17	632	17	632	17.1	435	11.8	300	231.5 105
ô	150	ó	152	22	559	22	559	22.1	562	14.4	365	463 210
8	200	8	203	26	660	26	660	26.1	664	16.1	410	738.5 335
10	250	10	254	31	787	31	787	31.1	791	17.9	455	1212.5 550
12	300	12	305	33	838	33	838	331	841	20.7	525	1433 650

FU	ILLBORE	C	LASS 900									
SI. in	ZE mm	c in	mm	L in	mm	L1 in	mm	L2 in	mm	H in	l mm	WEIGHT Ib ^K g
2	50	2	51	14.5	368	14.5	368	14.6	371	8	204	112.4 51
3	80	3	76	15	381	15	381	15.1	384	11.1	283	198.4 90
4	100	4	102	18	457	18	457	18.1	460	12.5	318	343.9 156
ô	150	ô	152	24	610	24	610	24.1	613	13.6	345	615.1 279
8	200	8	203	29	737	29	737	29.1	740	17.1	435	1040.6 472
10	250	10	254	33	838	33	838	33.1	841	20	509	1660.1 753
12	300	12	305	38	965	38	965	38.1	968	23.4	594	2072.3 940

FU	LLBORE	C	LASS 15	00									
SIZ in	E mm	(in	j mm	L in	mm	L1 in	mm	L2 in	mm	H	mm	WEIG Ib	HT Kg
2	50	2	51	14.5	368	14.5	368	14.6	371	8	204	112.4	51
3	80	3	76	18.5	470	18.5	470	18.6	473	13	329	315.3	143
4	100	4	102	21.5	546	21.5	546	21.6	549	14.4	365	471.8	214
ô	150	5.5	146	27.8	705	27.8	705	28	711	16.5	420	868.6	394

FU	LLBORE	CL	ASS 150									
SIZ in	E mm	in (t mm	L in	mm	L1 in	mm	L2 in	mm	H	mm	WEIGHT Ib ^K g
2	50	2	51	8	203	8	203	8.5	216	6.7	170	39.7 18
3	80	3	76	9.5	241	9.5	241	10	254	6.9	175	61.7 28
4	100	4	102	11.5	292	11.5	292	12	305	7.9	200	105.8 48
6	150	6	152	14	356	14	356	14.5	368	12.2	310	167.5 76
8	200	8	203	19.5	495	19.5	495	20	508	13.8	350	286.6 130
10	250	10	254	24.5	622	24.5	622	25	635	16.1	410	606.3 275
12	300	12	305	27.5	699	27.5	699	28	711	17.9	455	914.9 415
14	350	13	336	31	787	31	787	31.5	800	20.7	525	1256.6 570
16	400	15	387	34	864	34	864	34.5	876	23.2	590	1715.2 778
24	600	23	591	51	1295	51	1295	51.5	1308	19.5	495	2914.5 132

FU	LLBORE	C	LASS 30	0									
SIZ in	E mm	in	t mm	L in	mm	L1 in	mm	L2 in	mm	H in	mm	WEIG Ib	HT Kg
2	50	2	51	10.5	267	10.5	267	11.1	283	6.7	170	57.3	26
3	80	3	76	12.5	318	12.5	318	13.1	333	7.9	200	101.4	46
4	100	4	102	14	356	14	356	14.6	371	9.3	236	154.3	70
6	150	6	152	17.5	445	17.5	445	18.1	460	12.2	310	308.6	140
8	200	8	203	21	533	21	533	21.6	549	13.8	350	414.5	188
10	250	10	254	24.5	622	24.5	622	25.1	538	16.1	410	639.3	290
12	300	12	305	28	711	28	711	28.6	727	17.9	455	941.4	427
14	350	13	336	33	838	33	838	33.6	854	20.7	525	1291.9	586
16	400	15	387	34	864	34	864	34.6	879	23.2	590	1730.6	785
24	600	23	591	53	1346	53	1346	53.9	1368	19.5	495	4724.4	2143

PISTON CHECKVALVE

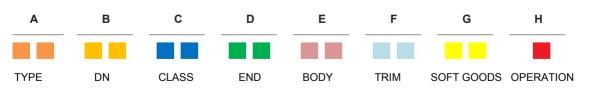
HOW TO ORDER AND SPECIFY API6D PISTON CHECK VALVES

Α	ТҮРЕ
PCK	PISTON CHECK VALVE

В	DN							
01	1"	10	10"					
02	2"	12	12"					
03	3"	16	16"					
06	6"	24	24" etc.					

С	PRESSURE CLASS							
15	Class 150	90	Class 900					
30	Class 300	150	Class 1500					
60	Class 600	250	Class 2500					
80	800	20	2 M					

D	END
RJ	Ring joint
BW	Butt weld
RF	Raised face
SE	Screwed In


E	BODY				
A1	WCB	A5	CF8M	B1	F316
A2	WCC	A6	CF8	B2	F304
A3	LCB	A7	WC6		
A4	LCC	A8	WC9		

_.

F	TRIM		
G1	A105+ENP	G5	316
G2	A105 +F316	G6	304
G3	A105+HCr	G7	A182 F316
G4	LF2+ENP	G8	TUNGSTEN COATED

G	SOFT GOODS
E1	VITON
E2	VITON GLT
E3	HNBR
E4	BUNA
E5	GRAPHITE + SS

н	SEALS		
1	Standard Flow Controlled	2	PRESSUE SEAL

EXAMPLE	DESCRIPTION
C-06-30-RF-A1-G5-E4-1	CAST STEEL API 600 CHECK VALVE, 6" 300 CLASS, RAISED FACE, BODY WCB, TRIM #5 FULL STELLITE, SOFT GOODS GRAPHITE SS, OPERATION OUTSIDE LEVER WITH LOCKING DEVICE

MATERIALS OF CONSTRUCTION

Components	US Standard Trim 10 "X" "X"	Canada Standard Trim 12 "X" "X"	Stainless Steel Trim 20 "X" "X"	Full Stainless Trim 30 "X" "X"	Metal-to-Metal Trim 40 "X" "X"	Stellite [™] Facing Seat/Piston Trim 50 "X" "X"
Body	A216-WCC	A352-LCC	A216-WCC	A351-CF8M	A216-WCC	A216-WCC
Cover	ASTM A515 Gr. 70	ASTM A516 Gr. 70	ASTM A515 Gr. 70	A240-316	ASTM A515 Gr. 70	ASTM A515 Gr. 70
Cover Seal	See Note 1	See Note 1	See Note 1	See Note 1	See Note 1	See Note 1
Bolting	A193 Gr. B7 A194 Gr. 2H	A320 Gr. L7M A194 Gr. 7M	A193 Gr. B7 A194 Gr. 2H	A193 Gr. B7M A194 Gr. 8M	A193 Gr. B7 A194 Gr. 2H	A193 Gr. B7 A194 Gr. 2H
Liner	A29-1018 ENP	A29-1018 ENP	A29-1018 ENP	A29-1018 ENP	A29-1018 ENP	A29-1018 ENP
Piston	410 SS	410 SS	410 SS	410 SS	410 SS	410 SS w/Stellite #6 Hard Face
Piston Seal	See Note 1	See Note 1	See Note 1	See Note 1	n/a	See Note 1
Seat Integral	A216-WCC	A352-LCC	n/a	A351-CF8M	n/a	n/a
Seat Renewable	e Carbon Steel	Carbon Steel	316 SS	316 SS	Carbon Steel	410 SS w/Stellite #6 Hard Face
Piston Rings	Cast Iron	Cast Iron	Cast Iron	Cast Iron ENP	Cast Iron	Cast Iron
Piston Spring	Alloy X-750	Alloy X-750	Alloy X-750	Alloy X-750	Alloy X-750	Alloy X-750

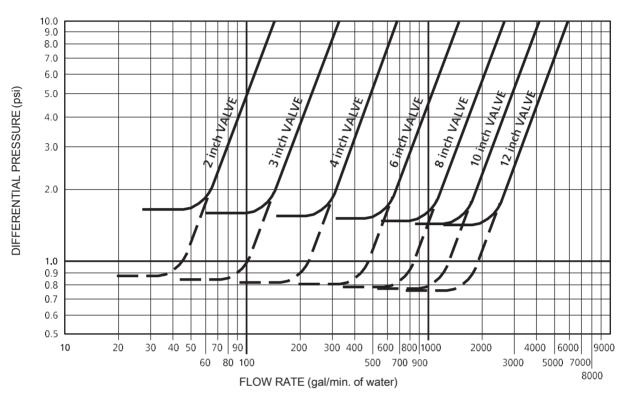
Notes:

1. In the trim number description, "X" "X" relates to the cover and piston seal material options. When ordering, replace the first "X" with the cover seal from the list below. Use the second "X" only when the piston seal is different from the cover seal (i.e., VM for FKM (Viton®) cover seal and metal-to-metal piston seal).

- B = Buna-N
- V = FKM (Viton)
- T = Tefon®
- M = Metal-to-metal*
- H = HSN
- F = Fiber gasket
- A = AFLAS
- * Not available in fg. 75 or 76

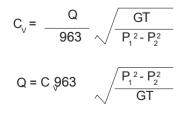
Other seal material options are available upon request.

.


- 2. N/A = Not available
- 3. ENP = Electroless nickel plated
- 4. EHC = Engineered hard chrome plating
- 5. Materials comply with NACE MR0175/ISO 15156
- 6. Other materials are available upon request

PRESSURE-LOSS CURVES/FLOW COEFFICIENTS

Pressure-loss Curves



Flow Coeffcients

Flow Coeffcients (C_{v}) Full Open Valves

Valve Size	C _v
2	46
3	104
4	212
6	477
8	848
10	1325
12	1908

Gas (compressible fow)

Liquid (incompressible fow)

The equations listed below are the basis for the above nomogram. The nomogram is a method for solving the equations below quickly and simply when service fluid is water.

$$C_V = Q \sqrt{\frac{G}{P}}$$
 $Q = C_V \sqrt{\frac{P}{G}}$ $P = \left[\frac{Q}{C_V}\right]^2 G$

Where:

Q = FLOW: LIQUIDS – gal/min

GASES – cf/hour

- C_V = FLOW COEFFICIENT P_1
- = INLET PRESSURE (psia)
- P₂ = OUTLET PRESSURE (psia)
- rP= PRESSURE DROP (P1 P2)
- T = ABSOLUTE TEMPERATURE (° F + 460)
- G = SPECIFIC GRAVITY (WATER = 1)

CALVARY VALVE, INC.

ADDRESS: 220 THRELL STREET PALESTINE, TEXAS 75801 TELEPHONE: (903) 729-0485 Fax: (903) 729-0487 www.calvaryvalve.com